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Many modern NLP approaches are implemented using a type of deep learning 
often referred to as generative AI.
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What is generative AI?

� AI models that generate data!

� Generative AI for NLP problems relies on large language models (LLMs)

� Recall the distributional hypothesis: we can learn a word’s meaning by understanding the contexts in 
which it typically occurs

� This can be done using n-gram language modeling, but it can often be done more effectively using 
neural network approaches

� A large language model is just a neural language model that has been pretrained on a large amount of 
text
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Recent advancements in generative AI have ushered 
in new training paradigms.

� Researchers began to consider task formulations in which they could finetune a pretrained 
model for a new purpose, rather than training a smaller model for that purpose from scratch

� They also began to examine task formulations where they could use pretrained models directly
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Rule-Based Era
•Prior to ~1990s

Statistical and (Early) 
Neural Era
•1990s to 2010s

Pretrain and Finetune Era
•Late 2010s to present

Pretrain and Prompt Era
•Early 2020s to present



Pretrain and Prompt Paradigm

• Intuition:

• If we take extremely large generative language models that have been pretrained on a wide 
variety of language data, we can prompt them to produce labels or output for new tasks

• Popular pretrained model for this purpose: GPT

Here are two training instances:
Data: "Natalie was soooooo happy she had booked a 5 a.m. 
flight.” Label: SARCASTIC
Data: “Natalie loved early morning flights because she could get 
to her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance.  Fill in the correct label:
Data: “Natalie was sooooooooooo excited to wait in an early 
morning airport security line.” Label:

Transformer SARCASTIC
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This 
Week’s 
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Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional 
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven 
Learning



How can we 
build a large 
language 
model?

� LLMs are generally Transformer-based 
language models

� Most LLMs will have multiple 
Transformer blocks with multi-head 
attention

� Following the Transformer block(s), 
LLMs will have a language modeling 
head

�Task/classifier head designed to 
predict which word comes next
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Recall: Transformers
� General premise:

� Deep learning models don’t need to wait to process items one after the other to incorporate 
sequential information

� Classic feedforward neural network:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous 

layer

� Modification for recurrent neural networks:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous 

layer + a vector of numbers representing the layer’s output at the previous timestep

� Modification for Transformers:
� Input to a feedforward layer is the output from a self-attention layer computed over the 

entire input sequence, indicating which words in the sequence are most important to one 
another
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q! = 𝐖𝐐𝐱!
• k! = 𝐖𝐊𝐱!
• v! = 𝐖𝐕𝐱!
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q! = 𝐖𝐐𝐱!
• k! = 𝐖𝐊𝐱!
• v! = 𝐖𝐕𝐱!

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise 
comparison scores between all possible query-key pairs in the full input sequence

• score!% = 𝐪! - 𝐤%

• 𝛼!% =
&'((score!")

∑#$%
& &'((score!#)
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q! =𝐖𝐐𝐱!
• k! =𝐖𝐊𝐱!
• v! =𝐖𝐕𝐱!

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise 
comparison scores between all possible query-key pairs in the full input sequence

• score!% = 𝐪! - 𝐤%

• 𝛼!% =
&'((score!")

∑#$%
& &'((score!#)

3. Compute the output vector 𝐲! as the attention-weighted sum of the input value vectors v

• 𝐲𝒊 = ∑%-./ 𝛼!%v%
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Transformer 
Blocks

• Transformers are implemented by 
stacking one or more blocks of the 
following layers:

• Self-attention layer

• Normalization layer

• Feedforward layer

• Another normalization layer

• Some of these layers have residual 
connections between them even 
though they do not immediately 
precede or proceed one another

Input

Self-Attention Layer
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orm

alize

Output
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We then implement large language models by stacking 
Transformer blocks!

� Many different architectures; today’s focus is “GPT-style” models

� We pretrain LLMs using a self-supervised training algorithm

� Take a very large corpus of text as training material (no manual 
labels required)

� At each time step, learn to predict the next word in the training 
corpus

� Minimize the error in predicting the true next word using cross-
entropy loss

Natalie Parde - UIC CS 421 17



Cross-Entropy Loss for LLM Training

� Cross-entropy measures the difference between predicted and true probability distributions

� 𝐿!" = −∑#∈% 𝐲𝐭[𝑤] log ,𝐲𝐭[𝑤]

� In language modeling, our correct distribution 𝐲𝐭 comes from knowing what the actual next word is

� We create a one-hot encoding where the dimension for the actual next word has a value of 1 and all 
other dimensions have values of 0

� This means that in language modeling, cross-entropy loss will be governed by the probability the 
model assigns to the correct next word (everything else gets multiplied by values of 0!), so we can 
simplify cross-entropy loss at a timestep t to:

� 𝐿!" ,𝐲𝐭, 𝐲𝐭 = −log ,𝐲𝐭[𝑤'()]
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Teacher Forcing

� Most LLMs are also pretrained using a technique 
called teacher forcing

� Teacher forcing: Always give the model the 
correct (rather than predicted) history sequence 
to predict the next word

� At each word position of the input, take the 
correct sequence of tokens and use them to 
compute a probability distribution over the 
possible next words, thereby computing the 
model’s loss for the next token

� Move to the next word, ignore (for training 
purposes) what the model just predicted, 
and instead use the correct sequence of 
tokens as input once again to estimate the 
next word
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Overall, this means that pretraining LLMs is done by….

� At a particular timestep, given all the preceding words, use the final Transformer layer to produce an 
output distribution over the full vocabulary

� During training, use the probability assigned to the correct word to calculate cross-entropy loss

� To get the loss for an entire training sequence, average cross-entropy loss across the sequence

� Adjust the weights in the network to minimize cross-entropy loss over the entire training sequence via 
gradient descent

� Note that Transformers allow for the entire sequence to be processed in parallel since the output for 
each element is computed separately (in contrast to RNNs, which requires serial calculation due to 
the recurrence in hidden states)
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How to handle “fixed” sequence lengths in Transformers?
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Since Transformers process an entire 
input sequence in parallel, they 
require a fixed context window

Much larger than context windows seen in n-gram language 
models!
GPT-4 has a context window of 4096 tokens

Llama 3 has a context window of 8192

What if our text is shorter or longer 
than the context window?

Shorter: Pad the input with zeroes or input multiple texts in a 
single context window, separated by end-of-text tokens
Longer: Truncate the text (but think carefully about how to do 
so and whether this will result in loss of useful information!)



Training Corpora 
for LLMs

� Mainly trained on large corpora scraped 
from the web:

� Common Crawl: 
https://commoncrawl.org/

� Colossal Clean Crawled Corpus (C4): 
https://github.com/allenai/allennlp/disc
ussions/5056

�Subset of Common Crawl (156 
billion English-language tokens) that 
has been deduplicated, filtered for 
non-natural language (e.g., code), 
and filtered for offensive words

� Dolma: https://allenai.github.io/dolma/
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When using raw data from the web, it’s a best practice to filter 
for quality and safety.

� Quality Filters: Train classifiers to assign quality scores to documents
� Very subjective, so often multiple quality filters should be considered

� For example, you may want quality filters to:
� Prioritize high-value reference corpora (e.g., sources that you deem reliable)

� Avoid websites with personal identifiable information (PII)

� Avoid websites with offensive or restricted content

� You can also implement quality filters to:
� Remove boilerplate text (very common online!)

� Deduplicate, or remove duplicate documents

� In addition to helping control what data is used to train your model, quality filtering often improves 
language model performance
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Safety Filtering

� Very subjective (desired safety filters may vary for people 
from different geographic, social, or cultural groups)

� Often includes toxicity detection, which classifies text 
based on whether it employs pejorative or stigmatizing 
language

� Doesn’t tend to work as well in data generated by speakers of 
minoritized dialects

� Tends to require toxic language in order to learn to detect 
toxicity
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Legal and Ethical Issues 
Regarding LLM Pretraining Data

� Copyright law varies across countries, and large 
web corpora contain a large amount of 
copyrighted content
� In the US, active legal discussions focus on 

whether the fair use doctrine extends to 
LLMs that are used to generate text that 
compete with the market from which they 
are trained!

� Data consent for large web corpora is often 
unclear or even ignored during the scraping 
process
� Questions exist regarding the extent to 

which Terms of Service and robots.txt files 
are legally valid across countries, and the 
extent to which new restrictions may be 
applied retroactively

� Privacy issues may arise when filters are not in 
place or fail to remove private information such 
as phone numbers or IP addresses
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Prompting: Using Pretrained LLMs to Solve NLP Tasks

� Conditional generation: Generate text conditioned on an input text string
� The input text string or context is often referred to as a prompt

� Large Transformer-based models work well for conditional generation because they facilitate 
consideration of very large contexts

� RNNs can theoretically consider infinite context, but in practice they tend to focus on the closest 
context and minimize the influence of long-range dependencies

� Transformers may require a fixed-length context window for practical purposes (e.g., training them 
on a particular GPU cluster) but the context window is much larger than what would be required for 
n-gram language modeling or feedforward neural language models
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How does prompting work?

• Take a large model that has already been trained to perform generative language 
modeling

• Develop a set of prompt templates for your task

• Prompt templates can be manually or automatically constructed

• Develop an approach for answer engineering
• Build an answer space (set of possible answers that your model may generate) and map that 

answer space to your desired outputs

• This can also be done manually or automatically using search techniques

• Format your input according to the relevant prompt template(s) and map the resulting 
language model output to your desired target output
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Case Example: Zero-Shot Task “Learning”
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LLM

Select a high-performing pretrained LLM



Case Example: Zero-Shot Task “Learning”
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LLM
Is the text “I just looooove 
midterms” sarcastic?

Determine what type of context is 
likely to prime the LLM to produce 
the desired output



Case Example: Zero-Shot Task “Learning”
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LLM
Is the text “I just looooove 
midterms” sarcastic?

P(“Yes” | “Is the text ‘I just 
looooove midterms’ sarcastic?”)

P(“No” | “Is the text ‘I just 
looooove midterms’ sarcastic?”)

P(… | “Is the text ‘I just looooove 
midterms’ sarcastic?”)

Find the output with the 
highest conditional 
probability, given the input



Case Example: Zero-Shot Task “Learning”
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LLM
Is the text “I just looooove 
midterms” sarcastic?

P(“Yes” | “Is the text ‘I just 
looooove midterms’ sarcastic?”)

P(“No” | “Is the text ‘I just 
looooove midterms’ sarcastic?”)

P(… | “Is the text ‘I just looooove 
midterms’ sarcastic?”)

Map the selected token to 
a class label

Sarcastic Not Sarcastic



Why would we want to use LLMs to solve NLP 
tasks?
• LLMs are very powerful due to the amount of contextual information that they learn 

during pretraining

• Many NLP tasks can take advantage of this contextual knowledge if they are cast as 
word prediction tasks

• In some cases, this can be done effectively with no task-specific training at all!
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Is the text “I just looooove 
midterms” sarcastic? LLM

Yes



Context window is key….

• The long context window used in popular Transformer-based LLMs is key to facilitating 
classification tasks in this scenario

• N-gram and feedforward neural language models: context isn’t large enough to capture 
full task description and/or input sample
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N-Gram 
LM

looooove midterms” 
sarcastic?

P(“Yes” | looooove midterms’ 
sarcastic?”)

P(“No” | looooove midterms’ 
sarcastic?”)

P(… | looooove midterms’ 
sarcastic?”)



We can solve a 
wide variety of 
NLP tasks 
using 
prompting!
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Question answering
• Context is the question
• Context-conditioned output is the answer

• Rationale: Words that are contextually likely to be 
generated following a question often form the 
correct answer

Summarization
• Context is a long passage of text, followed by 

token(s) that often indicate that a summary is 
desired in large web-based corpora
• Popular token for this: “tl;dr”

• Context-conditioned output is a summary
• Rationale: Certain signals indicating that a 

summarization follows are popular enough in 
web-based corpora that the language model 
learns to perform this as a text completion



Next Word 
Prediction

Next Word 
Prediction

Next Word 
Prediction

Tasks with longer-form desired output will require 
that we perform autoregressive generation.

<s>
Transformer generation

<s> generation
Transformer is

<s> generation is
Transformer fun
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Autoregressive Generation

• Also sometimes called causal language model generation

• Decodes a language model only in one direction (i.e., from the beginning of the text to 
the end of the text)
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I always have a fun time in CS 421.

👀👀👀👀👀👀



Autoregressive Generation Strategies

� Greedy decoding: Generate the most likely word, given the context

� .𝑤' = argmax
#∈%

𝑃(𝑤|w*')

� Produces locally optimal solutions

� When generating longer sequences of text, may not ultimately result in the best output

� Common issues with greedy decoding:

� Generated text tends to be generic

� Generated text tends to be repetitive

� Identical contexts will produce identical output
� Determinism is good for replicability, but not necessarily good for generating realistic output
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How can we 
improve upon 
greedy 
decoding?

� Beam search: Generate numerous possible 
completions while avoiding generating 
completions that stray beyond a fixed 
“beam width” and select the highest-
scoring completion after generating all 
possibilities in full

� Introduce sampling methods to diversify 
generated text: Choose words randomly 
according to their probabilities assigned by 
the model
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Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the 
previous output until that point, and use a Transformer-based language model to calculate that 
probability

� i ← 1

            wi ~ p(w)  # choose wi by sampling from the probability distribution p(w)

            while wi != EOS:

            i ← i + 1

            wi ~ p(wi | w<i)

� Advantages: Straightforward and easy to implement

� Disadvantages: Selects rare words somewhat often, resulting in output that can seem “weird”
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Important considerations during sampling….

� Quality: The generated output is accurate, coherent, and factual

� Diversity: The generated output is interesting and unique

� When sampling output from LLMs, quality and diversity are often at odds with one another!

� Diversity is often improved by selecting slightly less probable words, but this tends to reduce factuality 
and coherence
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Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the 
previous output until that point, and use a Transformer-based language model to calculate that probability

� Top-k Sampling: Instead of choosing the most probable word to generate:

1. Truncate the distribution to the top k most likely words

2. Renormalize the probability distribution

3. Randomly sample from among those k words according to the renormalized probabilities

� Tends to produce more diverse text while still retaining reasonably good quality
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Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the 
previous output until that point, and use a Transformer-based language model to calculate that 
probability

� Top-k Sampling: Instead of choosing the most probable word to generate, sample from among the top 
k most likely words

� Nucleus or Top-p Sampling: Instead of keeping the top fixed-k words, keep the top p percent of the 
probability mass

1. Truncate the distribution to remove very unlikely words in terms of their probability (don’t keep a predetermined 
number of words)

2. Proceed similarly to top-k sampling

� By dynamically increasing and decreasing the pool of word candidates, this approach may be more robust in 
different contexts
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Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the 
previous output until that point, and use a Transformer-based language model to calculate that 
probability

� Top-k Sampling: Instead of choosing the most probable word to generate, sample from among the top 
k most likely words

� Nucleus or Top-p Sampling: Instead of keeping the top fixed-k words, keep the top p percent of the 
probability mass

� Temperature Sampling: Reshape the distribution rather than truncating it
� Intuition comes from thermodynamics: Systems at high temperatures are flexible and can explore many 

possible states, whereas systems at low temperatures focus on the most probable words and decrease the 
probability of exploring rare words
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Temperature Sampling

� Divide the logit by a temperature parameter, 𝜏, before normalizing it and passing it through the softmax 
function

� 𝑦 = softmax('
(
)

� Why does temperature sampling work?

� Consider the low temperature sampling range 𝜏 ∈ (0,1]:
� When 𝜏 is very close to 1, the distribution remains very similar to the original z

� With lower 𝜏, then '
(
 results in larger values being passed to the softmax function

� Larger values passed to softmax result in increased probabilities for those corresponding words 
and accordingly smaller probabilities for the other, lower-probability words

� As 𝜏 approaches 0, the approach grows greedier and the probability of the most likely word 
approaches 1.0

� In high temperature sampling (𝜏 > 1), we can progressively flatten the word probability rather than 
making it greedier
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Advantages of Prompting

• Successful few-shot or even zero-shot 
approaches facilitate learning (or “learning”) 
from few or no training examples

• This allows researchers to build models for 
tasks that were previously inaccessible due to 
extremely scarce resource availability

• Prompting also requires limited or no 
parameter tuning for the base language model, 
making it possible to develop classifiers more 
efficiently
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What about cases when 
we can’t use a pretrained 
LLM from scratch?

� We can use LLMs as base models and further 
develop them for specific tasks using a 
process called fine-tuning

� This may be useful in many specialized 
settings:

� Legal text

� Medical text

� Low-resource languages
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How does fine-tuning work?

• In a nutshell:

• Take a pretrained model

• Run additional training passes on it using new data
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Pretrained 
LLMTraining



How does fine-tuning work?

• In a nutshell:

• Take a pretrained model

• Run additional training passes on it using new data
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Pretrained 
LLM

Fine-
Tuned 
LLMTraining More training!



How can we fine-tune models (in more detail)?

� Several different approaches

� Popular and straightforward approach: continued pretraining

� Retrain all the parameters of the model on the new data as if it just directly follows the pretraining data in the 
dataset

� Same task goal (word prediction)

� Same loss function

� This approach works well, but can be slow and expensive
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How to 
improve 
efficiency 
when fine-
tuning LLMs?
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Freeze some parameters 
(leave them unchanged from 
what was learned during 
pretraining) and focus on 
training the remaining 
parameters

Often referred to 
as parameter-
efficient fine-
tuning (PEFT)

Use a language model as a 
classifier for a different task 
(not language modeling itself) 
by adding a task head

Input to task head: 
Top layer 
embedding(s) 
from the LLM
Output: Classifier 
prediction

Switch to using supervised 
fine-tuning

Create a dataset 
of prompts and 
their desired 
responses, and 
train the language 
model to predict 
these responses



Evaluating LLMs

� Perplexity (introduced a few weeks ago with n-
gram language modeling) is also used to evaluate 
LLMs

� However, keep in mind: With LLMs, perplexity will 
be sensitive to differences in the tokenization 
algorithm

� Make sure that if you’re comparing LLMs using 
perplexity, they were trained using the same 
tokenizer!

� Task-specific metrics

� Power metrics

� Model size

� Training and inference times

� Energy usage

� Fairness
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Potential Harms from LLMs

Hallucination: LLMs are trained to 
generate tokens that would 
predictably come next in a coherent 
output, but most training algorithms 
do not have a way to enforce 
correctness
•This means that LLMs often generate content 

that sounds “good” but has no factual basis!

Toxic Language: Just like in earlier 
data-driven models (e.g., GloVe 

vectors), LLMs have been shown to 
replicate human stereotypes and 

negative attitudes about 
demographic groups

Cultural Bias: Web-based training 
data is disproportionately authored 

by people living in western countries, 
and as a result, LLMs often take a 

western cultural perspective

Information Leakage: If sensitive 
information isn’t properly filtered 

from the training data, adversaries 
can extract it through the use of 

malicious prompts

Misinformation: Since LLMs 
effectively generate coherent 

language, they can be used by 
malicious actors to generate harmful 

but convincing misinformation or 
propaganda
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Finding ways to address these potential harms is an important and active research area in NLP!



Summary: 
LLMs

� Generative AI in an NLP context refers to LLMs: large 
Transformer-based models trained for language modeling 
purposes

� LLMs can be pretrained and prompted for a wide variety 
of purposes

� Many LLMs are pretrained using teacher forcing, which 
forces the model to learn to predict the next word based 
on the correct input context

� LLMs are generally trained using large web corpora, which 
should be filtered for quality and safety purposes

� Prompting by simply providing an input or instruction to a 
model and expecting an answer directly is often referred to 
as zero-shot learning

� There are numerous strategies that we can use to decode 
an LLM to produce a sequence of generated output

� If we don’t want to use a pretrained LLM directly for our 
task, we can also fine-tune it to perform better in our 
desired task setting
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LLMs Beyond 
GPT

� GPT-powered models are the most popular 
LLMs among the general public, but they are 
far from the only type of LLM used by NLP 
researchers!

� Recall: With other sequence processing 
architectures (e.g., RNNs), bidirectionality 
is known to improve performance
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Can Transformers 
be bidirectional?
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� No theoretical reason why not!

� In causal LLMs (i.e., GPT-style 
models) we artificially constrain 
the model to consider only 
previous history because 
considering future context would 
trivialize the task of next word 
prediction
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In what 
settings would 
bidirectional 
Transformers 
be useful?

� In general, sequence labeling tasks (not generation!)

� Tasks where you can reasonably assume you’ll have the 
full context for all unit(s) to be labeled within a text 
sequence, and that no additional context will later be 
added

� Examples:

� Classifying social media posts from a dataset

� Assigning grammatical labels to words within a 
sentence that is already fully available
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Bidirectional 
Transformers

� Useful? ✅

� However, implementing bidirectional 
Transformers requires that we rethink some 
aspects of our LLM

q New training objective needed (next 
word prediction makes no sense with a 
model that can view the next word)

q New inference approaches needed (if 
we pretrain using a different training 
objective, the model is unlikely to 
generate text sequences of a similar 
quality to those produced using GPT-
style LLMs)
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What training 
objective 
works well for 
a bidirectional 
Transformer?
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• Language modeling objectives can be trained 
in a self-supervised manner

• Next word prediction works impressively well 
at helping LLMs understand relationships 
between real-world concepts

What we know from causal LLMs:

• Come up with training objectives that capture 
the same type of information as next word 
prediction, but that don’t rely on predicting a 
fixed-position unknown future word

The goal, then:

• Masked language modeling

The solution:



Masked Language Modeling

� Randomly select a subset of tokens from the training input and:

� Replace some of them with [MASK] tokens

� Replace some of them with other randomly sampled tokens

� Leave some of them unchanged

� For each sampled token, try to predict what the correct token is

� The more general form of this task is often referred to as denoising: in essence, you add noise to an 
input by corrupting it in some way, and then try to remove the noise as a learning objective
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After such a [MASK] night working on my project

…

this driving

Bidirectional Transformer
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After such a [MASK] night working on my project

…

this driving

Bidirectional Transformer
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Key Differences 
between Masked 
Language 
Modeling and 
Next Word 
Prediction

� Requires mapping an input sequence to an 
output sequence of the same length

� Masked tokens may be anywhere within 
the input sequence!

� In doing so, emphasizes the learning of high-
quality contextual representations of all 
input tokens

� These contextual representations can be 
broadly useful across many applications
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Decoder-Only 
Versus Encoder-
Only Models

� Recall (from week one!) our discussion of encoder-decoder models

� Causal LLMs like GPT are often referred to as decoder-only models 
since they focus on generating output

� With this analogy, bidirectional LLMs could be thought of as encoder-
only models: the focus is on generating high-quality contextual 
encodings of the input, rather than on producing a running stream of 
output 
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What is your favorite 
part of CS 421? Encoder Decoder

Hmm, good question 
…maybe the part 
about chatbots?
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Bidirectional Transformer Architecture

� Aside from the pretraining objective, are any major changes 
required from the Transformer architectures used for causal LLMs?

� Nope!

� Just allow the model to access the full context and change the 
pretraining objective

� Different types of bidirectional Transformers can be created, just like 
different types of causal Transformers can be created, by stacking 
Transformer blocks and using variations of standard pretraining tasks

� Extremely popular bidirectional Transformer architecture: BERT

� Paper Link: https://aclanthology.org/N19-1423.pdf
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Bidirectional Encoder Representations from Transformers (BERT)

� Commonly accepted as a standard bidirectional Transformer benchmark model

� Implemented using:

� 12 Transformer blocks, each of which have 12 bidirectional attention heads 

� 768-dimensional hidden layers

� A subword vocabulary of 30,000 tokens

� A fixed input length of 512 subword tokens

� Overall, this means that the model has 100,000,000 trainable parameters!
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Many variations 
and extensions of 
BERT have been 
developed and are 
very popular 
among NLP 
researchers.

� RoBERTa: Trains for longer and removes a 
pretraining task (more soon!)

� XLM-RoBERTa: Pretrains similarly to 
RoBERTa but with multiple languages in the 
input dataset

� SpanBERT: Focuses on spans of text

� DistilBERT: Distills BERT such that fewer 
parameters are needed (more efficient)
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XLM-
RoBERTa’s 
Architecture

� Multilingual subword vocabulary with 250,000 tokens

� 24 Transformer blocks, each with 16 attention heads

� 1024-dimensional hidden layers

� A fixed input length of 512 subword tokens

� This amounts to 550,000,000 trainable parameters overall

� Note that this is still relatively small compared to state-of-
the-art causal LLMs (Llama 3 has 405,000,000,000 
parameters)!

� Masked language models tend to be much smaller, and thus 
more efficient to train, than causal LLMs

Natalie Parde - UIC CS 421 72



BERT is trained to perform two tasks.

• Masked language modeling
• As described earlier, but include position embeddings
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After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17



BERT is trained to perform two tasks.

• Masked language modeling
• As described earlier, but include position embeddings

• In BERT, 15% of tokens per sequence are sampled for learning (80% of these are replaced 
with [MASK], 10% are replaced with other randomly sampled tokens, and 10% are left 
unchanged)

• Next sentence prediction
• Predict whether pairs of sentences are actually adjacent to one another in text
• Prepend a [CLS] token to the pair of sentences

• Separate the two sentences using a [SEP] token

• Add segment embeddings to the model

• Assign a label based on the representation learned for the [CLS] token
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Next Sentence Prediction

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]
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Next Sentence Prediction

[CLS] p1 s1

…

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2
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Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer

1 (second sentence does follow the first)

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2
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Why add next 
sentence 
prediction?

� For many tasks, it is beneficial to understand the 
relationships between pairs of sentences

� Paraphrase detection
� Entailment

� Discourse coherence
� This more global type of understanding isn’t directly 

encoded using masked language modeling

� Next sentence prediction allows us to target this 
more directly while still using self-supervised 
learning
� 50% of training pairs are taken from the corpus 

directly
� 50% are created by randomly sampling a 

second sentence from elsewhere in the corpus
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Contextual 
Embeddings

� An important auxiliary outcome of training masked 
language models is that they learn contextual 
embeddings for all of the tokens in an input (including 
tokens that weren’t masked out)

� How can we access these embeddings?

� Use the output vector zi for a particular input token xi 
directly

� Or, average across the last few layers of the model to get 
an averaged zi

� We can use these embeddings in all of the same types 
of applications where we would use other word 
vectors!

� Feature representations

� Word similarity and analogy tasks
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We can also use contextual embeddings for more general-purpose 
similarity metrics.

� BERTScore

� Get contextual embeddings for tokens in the candidate and reference

� Find the cosine similarity between each possible pair of (candidate, reference) tokens

� Match each token in the candidate with its most similar token in the reference

� Use the similarity values for those matches to calculate BERT-precision and BERT-recall

� 𝑅BERT =
)
|+|
∑+$∈+max-+%∈ -+

𝐱./ ;𝐱0

� 𝑃BERT =
)
| -+|
∑ -+%∈ -+max+$∈+

𝐱./ ;𝐱0

� Use BERT-precision and BERT-recall to compute F1 (same equation as usual)
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Contextual Versus 
Static Embeddings

� Static word embeddings (e.g., Word2Vec, GloVe, or 
TFIDF) represent the meaning of unique vocabulary 
words

� Regardless of how the vocabulary word is used, 
the vector will remain the same

� Contextual word embeddings represent the meaning of 
tokens as they appear in text

� Vectors will only be the same if the context for two 
tokens is identical (very rare for this to be the 
case!)

� This means that different senses of a word will be 
represented using different vectors (and even just 
the same word sense used in a slightly different 
context will be represented using a different 
vector)
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Measuring 
Similarity 
between 
Contextual 
Embeddings

� Contextual embeddings tend to be more 
similar across all words than static 
embeddings

� This means that the cosine similarity for 
most contextual vectors will be close to 1.0

� If we’re interested in measuring vector 
similarity between tokens, we would ideally 
have more isotropic vectors, such that the 
expected cosine similarity between a 
randomly sampled pair of embeddings 
would be 0
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How can we 
make our 
vectors more 
isotropic?

� Standardize the vectors by subtracting the mean vector and 
dividing by the standard deviation

� Mean vector of all embeddings in a corpus C:

� 𝜇 = )
|!|
∑x∈! 𝐱

� Standard deviation:

� 𝜎 = )
|!|
∑x∈!(𝐱 − 𝛍),

� Standardized vector:

� 𝐳 = 𝐱.𝛍
0
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Pretrain and Finetune Paradigm

� BERT is the most popular LLM used in the pretrain and finetune paradigm

� Intuition:

� If we take models that have been pretrained on massive datasets for other 
tasks, we can finetune them for our specific task while also taking advantage of 
the information that was learned during the pretraining process
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How do we 
finetune 
bidirectional 
Transformers?

� Take a large model that has already been trained 
for some other task

� Example: BERT has already been trained for 
masked language modeling and next sentence 
prediction

� Add a task head to the model

� Task-specific layer(s) that take the input 
representations from the pretrained model and 
produce your desired output

� Update the parameters for the task head while 
ignoring or only minimally adjusting the weights 
for the pretrained model

� This will require that you have supervised training 
data for your target task
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Example: Finetuned Sarcasm Detector

[CLS] p1

Bidirectional Transformer

sarcasm
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I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



Why does this work?

• Pretraining on large datasets allows language models to 
build high-quality representations facilitating general 
language understanding

• In many cases, this knowledge can be reused across 
many tasks
• Sentences are likely to have similar structure across many 

language domains

• Common sense knowledge is likely to transfer across 
problem settings

• Semantic relationships often hold across tasks

• Specialized tasks often have much less data available 
than the tasks used to train large language models

• By finetuning an existing LLM to perform the specialized 
task, we can retain the useful general language 
information we’ve learned and use it to help us more 
efficiently and effectively solve our specialized task
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We can use 
finetuning in many 
different task 
setups.

� Sequence classification

� Add a unique [CLS] token to the beginning of the input, and use 
the output vector for that token as input to the task head
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We can use 
finetuning in many 
different task 
setups.

� Sequence classification

� Add a unique [CLS] token to the beginning of the input, and use 
the output vector for that token as input to the task head

� Sequence pair classification

� Set the task up similarly to the next sentence prediction 
pretraining objective (add a [CLS] token and also separate 
sentences using [SEP] tokens)
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[CLS] p1 s1

…

Bidirectional Transformer

1 (second sentence does follow the first)

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2



We can use 
finetuning in many 
different task 
setups.

� Sequence classification

� Add a unique [CLS] token to the beginning of the input, and use 
the output vector for that token as input to the task head

� Sequence pair classification

� Set the task up similarly to the next sentence prediction 
pretraining objective (add a [CLS] token and also separate 
sentences using [SEP] tokens)

� Sequence labeling

� Set the task up similarly to the masked language modeling task, 
but predict output labels for every token in the input (not just 
those that are masked)
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After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After such a [MASK] night working on my project

…

this driving

Bidirectional Transformer

late project morning
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Which model should you use?

� Many approaches are now available for us to use when developing NLP systems, ranging from early rule-
based techniques to very recent prompt-based methods

� In general, with each new modeling era of NLP we have sacrificed some degree of control and interpretability 
for increased performance
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Rule-Based

• Complete control and 
interpretability, but very 
limited ability to 
generalize

Statistical

• We have immediate 
access to feature values 
and weights and can 
generalize a bit more 
broadly, but we require 
supervised training data

Neural End-to-End

• We no longer know our 
feature values or 
weights, but we can 
generalize more broadly 
and we know our exact 
inputs and outputs

Pretrain and Finetune

• We are generalizing from 
a wealth of broad 
knowledge, although we 
only know specific 
data/task details 
pertaining to our target 
task

Pretrain and Prompt

• We don’t know exactly 
how or why our model is 
making its decisions, but 
we achieve strong 
performance and no 
longer require 
supervised training data



Remember, deep learning isn’t necessarily the 
best solution in all scenarios!

� Less interpretable

� Particularly important to consider when dealing 
with sensitive tasks (e.g., classifying health-related 
documents)

� Prompt-based approaches may generate 
inaccurate output and present it confidently

� May overfit with very low-resource problems

� May overcomplicate the solution

� In some cases, a naïve Bayes model may work just 
as well as a complex deep learning approach
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Tools for 
Implementing 
Generative AI 
Systems

� Pretrained Language Models

� HuggingFace Model Hub: 
https://huggingface.co/models

� Deep Learning Frameworks

� PyTorch: https://pytorch.org/

� TensorFlow: https://www.tensorflow.org/

� Prompt Tuning Frameworks

� OpenPrompt: 
https://github.com/thunlp/OpenPrompt
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Other Practical Guidelines for Data-Driven NLP

� When using publicly available models or releasing your own model 
or data to the public, it is good to be transparent about:

� How the data was collected and/or the model was trained

� Whether your resource is open or closed

� Other information applicable to the greater community
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Datasheets

� In electronics, new applications typically come with 
datasheets that describe important information for 
understanding how to use the application properly

� AI research until recently has had no such 
equivalent, but this is quickly changing!

� It is now considered a best practice to release a 
datasheet with every new dataset

� Paper introducing datasheets: 
https://www.microsoft.com/en-
us/research/uploads/prod/2019/01/1803.09010.pdf
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What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations
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What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations
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Why create this dataset in 
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How was the data collected, who was 
involved, and how long did it take?  (Is 

anything redacted from the data?)
How was the data 

preprocessed (and is the 
raw data still available)?

What license is the data distributed 
under?  (Are there any fees or 
access/export restrictions?)

Who will support the dataset, and for 
how long?  (Will the dataset be 

extended, and can others extend it?)Were the people represented by the dataset 
informed of the data’s collection, and was the data 
collection reviewed by an ethical board?  (Does the 
dataset include information that might be sensitive, 

confidential, inappropriate, or offensive?)



What about 
datasheets for 
trained models?

� Less popular so far, but there is also 
increasing interest in this

� Top-tier NLP research venues now require 
general-purpose “responsible AI” checklists 
that cover both data collection and model 
development

� Responsible NLP Research Checklist: 
https://aclrollingreview.org/responsible
NLPresearch/

� Checklist for responsible data use in 
NLP: 
https://aclanthology.org/2021.findings-
emnlp.414.pdf

� Reproducibility in NLP checklist: 
https://aclanthology.org/D19-1224.pdf
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Increasing compute requirements have recently 
opened new questions about data and model access.

� Until recently, most generally-useful 
NLP models could be reasonably 
expected to run on standard 
consumer-grade or academic 
hardware

� Naïve Bayes and logistic 
regression are lightweight 
models that can be trained on a 
laptop!

� However, high-performing general-
purpose models today tend to be 
LLMs with massive compute 
requirements
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As a result, many 
researchers and NLP 
hobbyists find themselves 
facing a dilemma….

� Should they purchase the necessary 
hardware to run training and inference 
cycles for their desired LLM architecture?

� Or, should they purchase API credits to 
access an externally hosted LLM?
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Open and Closed 
Models
� Open Models: LLMs that are open-sourced, meaning 

that you can download their source code and make 
updates, retrain them, and run inference using them 
(provided that you have the necessary hardware)

� Llama 3.1

� BLOOM

� BERT

� Closed Models: LLMs that are not open-sourced, 
meaning that you can only access them through API 
calls.

� GPT-4 (and other recent GPT models)

� Gemini

� Claude
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Which is better to use: open or closed models?

Open Models
� Advantages:

� Enhanced data security

� Only downstream cost is power consumption

� Customizable

� Transparent

� Disadvantages:
� Big upfront cost (hardware!)

� Requires systems expertise

� Ample opportunity for bugs to emerge

Closed Models
� Advantages:

� No local hardware requirements

� LLM host takes care of messy backend issues

� Easy to switch between LLM architectures

� Straightforward to use

� Disadvantages:
� Costs are incurred with each use

� Data is sent to third-party

� Black box
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Cases that may suggest using one or the other include….
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Scenario: You are working in a 
well-established research lab 

with a GPU cluster, and you want 
to experiment with many 

variations of an LLM

• Recommendation: Open 
models will allow you to 
leverage your existing resources 
and more fully customize your 
model

Scenario: You are just starting out 
exploring LLMs, and you have an 

idea that you want to test for a 
personal project

• Recommendation: Closed 
models will abstract away a lot 
of the complicated setup 
required to train and use LLMs, 
and the number of API calls 
you’ll need for a personal 
project likely won’t incur 
massive expenses

Scenario: You’re a doctor and 
you’re interested in whether LLMs 

can effectively find important 
details in your patients’ medical 

records

• Recommendation: Open 
models will allow you to keep 
your data in your local 
environment---you don’t want to 
risk medical records being used 
for later model training by a 
third-party entity!

Scenario: You’re working in a 
well-established research lab and 

you’d like to use an LLM to 
generate synthetic data for 

downstream classifier training

• Recommendation: Either type 
of model will work!  Open 
models are more replicable if 
your lab is equipped to run 
them, whereas closed models 
may produce a bit higher-quality 
output and are unlikely to be 
expensive for generating a fixed 
number of data samples



How can we 
release models 
and data to the 
greater 
community?

� To release data to the community, there are a few 
ways to ensure that others can find and access it:

� Host the data on a well-known data repository
�HuggingFace Hub: 

https://huggingface.co/datasets

�LRE Map: https://lremap.elra.info/
� Publish a paper about the data

� International Conference on Language 
Resources and Evaluation: https://lrec-
coling-2024.org/

�arXiv (for non peer-reviewed work): 
https://arxiv.org/

� Create a datasheet with clear guidelines and 
licensing terms
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How can we 
release models 
and data to the 
greater 
community?

� To release models to the community, you can:
� Host the code in a publicly accessible 

repository with clear documentation
� GitHub

� HuggingFace Hub: 
https://huggingface.co/docs/hub/en/index

� Zenodo: https://zenodo.org/ (gives you citeable 
DOI, which is helpful for many researchers)

� Establish clear protocols for use, reuse, 
modification, and attribution
� Give people a bibliography entry that they can 

easily add as a reference!

� Fill out a responsible AI checklist with full 
information available about library versions, 
runtime environment, hardware requirements, 
and hyperparameters so that others can easily 
start using your model in their own pipelines
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Summary: 
Masked 

Language 
Modeling and 

Practical 
Guidelines for 

Data-Driven NLP

� Bidirectional Transformers are used to train LLMs with masked 
language modeling objectives

� Whereas causal LLMs are often viewed as decoder-only 
models, masked language modeling LLMs are often viewed as 
encoder-only models

� BERT is a popular bidirectional Transformer architecture

� BERT and similar models produce contextual embeddings and 
can be finetuned for many different types of NLP tasks

� When we share datasets publicly, it is a best practice to also 
share a datasheet

� When we share models publicly, it is a best practice to share 
code, hyperparameters, guidelines for use, and other 
information that others may need to replicate the work

� LLMs may be available as open or closed models, and these 
models may be best-suited to different types of problems or 
computing environments
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