
Generative AI
Natalie Parde

UIC CS 421

Many modern NLP approaches are implemented using a type of deep learning
often referred to as generative AI.

Natalie Parde - UIC CS 421 2

What is generative AI?

� AI models that generate data!

� Generative AI for NLP problems relies on large language models (LLMs)

� Recall the distributional hypothesis: we can learn a word’s meaning by understanding the contexts in
which it typically occurs

� This can be done using n-gram language modeling, but it can often be done more effectively using
neural network approaches

� A large language model is just a neural language model that has been pretrained on a large amount of
text

Natalie Parde - UIC CS 421 3

Recent advancements in generative AI have ushered
in new training paradigms.

� Researchers began to consider task formulations in which they could finetune a pretrained
model for a new purpose, rather than training a smaller model for that purpose from scratch

� They also began to examine task formulations where they could use pretrained models directly

Natalie Parde - UIC CS 421 4

Rule-Based Era
•Prior to ~1990s

Statistical and (Early)
Neural Era
•1990s to 2010s

Pretrain and Finetune Era
•Late 2010s to present

Pretrain and Prompt Era
•Early 2020s to present

Pretrain and Prompt Paradigm

• Intuition:

• If we take extremely large generative language models that have been pretrained on a wide
variety of language data, we can prompt them to produce labels or output for new tasks

• Popular pretrained model for this purpose: GPT

Here are two training instances:
Data: "Natalie was soooooo happy she had booked a 5 a.m.
flight.” Label: SARCASTIC
Data: “Natalie loved early morning flights because she could get
to her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance. Fill in the correct label:
Data: “Natalie was sooooooooooo excited to wait in an early
morning airport security line.” Label:

Transformer SARCASTIC

Natalie Parde - UIC CS 421 5

This
Week’s
Topics

Natalie Parde - UIC CS 421 6

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

How can we
build a large
language
model?

� LLMs are generally Transformer-based
language models

� Most LLMs will have multiple
Transformer blocks with multi-head
attention

� Following the Transformer block(s),
LLMs will have a language modeling
head

�Task/classifier head designed to
predict which word comes next

Natalie Parde - UIC CS 421 7

Recall: Transformers
� General premise:

� Deep learning models don’t need to wait to process items one after the other to incorporate
sequential information

� Classic feedforward neural network:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous

layer

� Modification for recurrent neural networks:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous

layer + a vector of numbers representing the layer’s output at the previous timestep

� Modification for Transformers:
� Input to a feedforward layer is the output from a self-attention layer computed over the

entire input sequence, indicating which words in the sequence are most important to one
another

Natalie Parde - UIC CS 421 8

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q! = 𝐖𝐐𝐱!
• k! = 𝐖𝐊𝐱!
• v! = 𝐖𝐕𝐱!

Natalie Parde - UIC CS 421 9

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
visqis

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 10

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q! = 𝐖𝐐𝐱!
• k! = 𝐖𝐊𝐱!
• v! = 𝐖𝐕𝐱!

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise
comparison scores between all possible query-key pairs in the full input sequence

• score!% = 𝐪! - 𝐤%

• 𝛼!% =
&'((score!")

∑#$%
& &'((score!#)

Natalie Parde - UIC CS 421 11

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis
𝛼!" = softmax score 𝑥! , 𝑥"

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 12

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q! =𝐖𝐐𝐱!
• k! =𝐖𝐊𝐱!
• v! =𝐖𝐕𝐱!

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise
comparison scores between all possible query-key pairs in the full input sequence

• score!% = 𝐪! - 𝐤%

• 𝛼!% =
&'((score!")

∑#$%
& &'((score!#)

3. Compute the output vector 𝐲! as the attention-weighted sum of the input value vectors v

• 𝐲𝒊 = ∑%-./ 𝛼!%v%

Natalie Parde - UIC CS 421 13

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis
𝛼!" = softmax score 𝑥! , 𝑥"

𝑦! =<
"#!

𝛼!"𝑣"

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 14

Transformer
Blocks

• Transformers are implemented by
stacking one or more blocks of the
following layers:

• Self-attention layer

• Normalization layer

• Feedforward layer

• Another normalization layer

• Some of these layers have residual
connections between them even
though they do not immediately
precede or proceed one another

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

Natalie Parde - UIC CS 421 15

This
Week’s
Topics

Natalie Parde - UIC CS 421 16

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

We then implement large language models by stacking
Transformer blocks!

� Many different architectures; today’s focus is “GPT-style” models

� We pretrain LLMs using a self-supervised training algorithm

� Take a very large corpus of text as training material (no manual
labels required)

� At each time step, learn to predict the next word in the training
corpus

� Minimize the error in predicting the true next word using cross-
entropy loss

Natalie Parde - UIC CS 421 17

Cross-Entropy Loss for LLM Training

� Cross-entropy measures the difference between predicted and true probability distributions

� 𝐿!" = −∑#∈% 𝐲𝐭[𝑤] log ,𝐲𝐭[𝑤]

� In language modeling, our correct distribution 𝐲𝐭 comes from knowing what the actual next word is

� We create a one-hot encoding where the dimension for the actual next word has a value of 1 and all
other dimensions have values of 0

� This means that in language modeling, cross-entropy loss will be governed by the probability the
model assigns to the correct next word (everything else gets multiplied by values of 0!), so we can
simplify cross-entropy loss at a timestep t to:

� 𝐿!" ,𝐲𝐭, 𝐲𝐭 = −log ,𝐲𝐭[𝑤'()]

Natalie Parde - UIC CS 421 18

Teacher Forcing

� Most LLMs are also pretrained using a technique
called teacher forcing

� Teacher forcing: Always give the model the
correct (rather than predicted) history sequence
to predict the next word

� At each word position of the input, take the
correct sequence of tokens and use them to
compute a probability distribution over the
possible next words, thereby computing the
model’s loss for the next token

� Move to the next word, ignore (for training
purposes) what the model just predicted,
and instead use the correct sequence of
tokens as input once again to estimate the
next word

Natalie Parde - UIC CS 421 19

Overall, this means that pretraining LLMs is done by….

� At a particular timestep, given all the preceding words, use the final Transformer layer to produce an
output distribution over the full vocabulary

� During training, use the probability assigned to the correct word to calculate cross-entropy loss

� To get the loss for an entire training sequence, average cross-entropy loss across the sequence

� Adjust the weights in the network to minimize cross-entropy loss over the entire training sequence via
gradient descent

� Note that Transformers allow for the entire sequence to be processed in parallel since the output for
each element is computed separately (in contrast to RNNs, which requires serial calculation due to
the recurrence in hidden states)

Natalie Parde - UIC CS 421 20

How to handle “fixed” sequence lengths in Transformers?
Natalie Parde - UIC CS 421 21

Since Transformers process an entire
input sequence in parallel, they
require a fixed context window

Much larger than context windows seen in n-gram language
models!
GPT-4 has a context window of 4096 tokens

Llama 3 has a context window of 8192

What if our text is shorter or longer
than the context window?

Shorter: Pad the input with zeroes or input multiple texts in a
single context window, separated by end-of-text tokens
Longer: Truncate the text (but think carefully about how to do
so and whether this will result in loss of useful information!)

Training Corpora
for LLMs

� Mainly trained on large corpora scraped
from the web:

� Common Crawl:
https://commoncrawl.org/

� Colossal Clean Crawled Corpus (C4):
https://github.com/allenai/allennlp/disc
ussions/5056

�Subset of Common Crawl (156
billion English-language tokens) that
has been deduplicated, filtered for
non-natural language (e.g., code),
and filtered for offensive words

� Dolma: https://allenai.github.io/dolma/

Natalie Parde - UIC CS 421 22

https://commoncrawl.org/
https://github.com/allenai/allennlp/discussions/5056
https://github.com/allenai/allennlp/discussions/5056
https://allenai.github.io/dolma/

When using raw data from the web, it’s a best practice to filter
for quality and safety.

� Quality Filters: Train classifiers to assign quality scores to documents
� Very subjective, so often multiple quality filters should be considered

� For example, you may want quality filters to:
� Prioritize high-value reference corpora (e.g., sources that you deem reliable)

� Avoid websites with personal identifiable information (PII)

� Avoid websites with offensive or restricted content

� You can also implement quality filters to:
� Remove boilerplate text (very common online!)

� Deduplicate, or remove duplicate documents

� In addition to helping control what data is used to train your model, quality filtering often improves
language model performance

Natalie Parde - UIC CS 421 23

Safety Filtering

� Very subjective (desired safety filters may vary for people
from different geographic, social, or cultural groups)

� Often includes toxicity detection, which classifies text
based on whether it employs pejorative or stigmatizing
language

� Doesn’t tend to work as well in data generated by speakers of
minoritized dialects

� Tends to require toxic language in order to learn to detect
toxicity

Natalie Parde - UIC CS 421 24

Legal and Ethical Issues
Regarding LLM Pretraining Data

� Copyright law varies across countries, and large
web corpora contain a large amount of
copyrighted content
� In the US, active legal discussions focus on

whether the fair use doctrine extends to
LLMs that are used to generate text that
compete with the market from which they
are trained!

� Data consent for large web corpora is often
unclear or even ignored during the scraping
process
� Questions exist regarding the extent to

which Terms of Service and robots.txt files
are legally valid across countries, and the
extent to which new restrictions may be
applied retroactively

� Privacy issues may arise when filters are not in
place or fail to remove private information such
as phone numbers or IP addresses

Natalie Parde - UIC CS 421 25

This
Week’s
Topics

Natalie Parde - UIC CS 421 26

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

Prompting: Using Pretrained LLMs to Solve NLP Tasks

� Conditional generation: Generate text conditioned on an input text string
� The input text string or context is often referred to as a prompt

� Large Transformer-based models work well for conditional generation because they facilitate
consideration of very large contexts

� RNNs can theoretically consider infinite context, but in practice they tend to focus on the closest
context and minimize the influence of long-range dependencies

� Transformers may require a fixed-length context window for practical purposes (e.g., training them
on a particular GPU cluster) but the context window is much larger than what would be required for
n-gram language modeling or feedforward neural language models

Natalie Parde - UIC CS 421 27

How does prompting work?

• Take a large model that has already been trained to perform generative language
modeling

• Develop a set of prompt templates for your task

• Prompt templates can be manually or automatically constructed

• Develop an approach for answer engineering
• Build an answer space (set of possible answers that your model may generate) and map that

answer space to your desired outputs

• This can also be done manually or automatically using search techniques

• Format your input according to the relevant prompt template(s) and map the resulting
language model output to your desired target output

Natalie Parde - UIC CS 421 28

Case Example: Zero-Shot Task “Learning”

Natalie Parde - UIC CS 421 29

LLM

Select a high-performing pretrained LLM

Case Example: Zero-Shot Task “Learning”

Natalie Parde - UIC CS 421 30

LLM
Is the text “I just looooove
midterms” sarcastic?

Determine what type of context is
likely to prime the LLM to produce
the desired output

Case Example: Zero-Shot Task “Learning”

Natalie Parde - UIC CS 421 31

LLM
Is the text “I just looooove
midterms” sarcastic?

P(“Yes” | “Is the text ‘I just
looooove midterms’ sarcastic?”)

P(“No” | “Is the text ‘I just
looooove midterms’ sarcastic?”)

P(… | “Is the text ‘I just looooove
midterms’ sarcastic?”)

Find the output with the
highest conditional
probability, given the input

Case Example: Zero-Shot Task “Learning”

Natalie Parde - UIC CS 421 32

LLM
Is the text “I just looooove
midterms” sarcastic?

P(“Yes” | “Is the text ‘I just
looooove midterms’ sarcastic?”)

P(“No” | “Is the text ‘I just
looooove midterms’ sarcastic?”)

P(… | “Is the text ‘I just looooove
midterms’ sarcastic?”)

Map the selected token to
a class label

Sarcastic Not Sarcastic

Why would we want to use LLMs to solve NLP
tasks?
• LLMs are very powerful due to the amount of contextual information that they learn

during pretraining

• Many NLP tasks can take advantage of this contextual knowledge if they are cast as
word prediction tasks

• In some cases, this can be done effectively with no task-specific training at all!

Natalie Parde - UIC CS 421 33

Is the text “I just looooove
midterms” sarcastic? LLM

Yes

Context window is key….

• The long context window used in popular Transformer-based LLMs is key to facilitating
classification tasks in this scenario

• N-gram and feedforward neural language models: context isn’t large enough to capture
full task description and/or input sample

Natalie Parde - UIC CS 421 34

N-Gram
LM

looooove midterms”
sarcastic?

P(“Yes” | looooove midterms’
sarcastic?”)

P(“No” | looooove midterms’
sarcastic?”)

P(… | looooove midterms’
sarcastic?”)

We can solve a
wide variety of
NLP tasks
using
prompting!

Natalie Parde - UIC CS 421 35

Question answering
• Context is the question
• Context-conditioned output is the answer

• Rationale: Words that are contextually likely to be
generated following a question often form the
correct answer

Summarization
• Context is a long passage of text, followed by

token(s) that often indicate that a summary is
desired in large web-based corpora
• Popular token for this: “tl;dr”

• Context-conditioned output is a summary
• Rationale: Certain signals indicating that a

summarization follows are popular enough in
web-based corpora that the language model
learns to perform this as a text completion

Next Word
Prediction

Next Word
Prediction

Next Word
Prediction

Tasks with longer-form desired output will require
that we perform autoregressive generation.

<s>
Transformer generation

<s> generation
Transformer is

<s> generation is
Transformer fun

Natalie Parde - UIC CS 421 36

Autoregressive Generation

• Also sometimes called causal language model generation

• Decodes a language model only in one direction (i.e., from the beginning of the text to
the end of the text)

Natalie Parde - UIC CS 421 37

I always have a fun time in CS 421.

👀👀👀👀👀👀

Autoregressive Generation Strategies

� Greedy decoding: Generate the most likely word, given the context

� .𝑤' = argmax
#∈%

𝑃(𝑤|w*')

� Produces locally optimal solutions

� When generating longer sequences of text, may not ultimately result in the best output

� Common issues with greedy decoding:

� Generated text tends to be generic

� Generated text tends to be repetitive

� Identical contexts will produce identical output
� Determinism is good for replicability, but not necessarily good for generating realistic output

Natalie Parde - UIC CS 421 38

How can we
improve upon
greedy
decoding?

� Beam search: Generate numerous possible
completions while avoiding generating
completions that stray beyond a fixed
“beam width” and select the highest-
scoring completion after generating all
possibilities in full

� Introduce sampling methods to diversify
generated text: Choose words randomly
according to their probabilities assigned by
the model

Natalie Parde - UIC CS 421 39

Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the
previous output until that point, and use a Transformer-based language model to calculate that
probability

� i ← 1

 wi ~ p(w) # choose wi by sampling from the probability distribution p(w)

 while wi != EOS:

 i ← i + 1

 wi ~ p(wi | w<i)

� Advantages: Straightforward and easy to implement

� Disadvantages: Selects rare words somewhat often, resulting in output that can seem “weird”

Natalie Parde - UIC CS 421 40

Important considerations during sampling….

� Quality: The generated output is accurate, coherent, and factual

� Diversity: The generated output is interesting and unique

� When sampling output from LLMs, quality and diversity are often at odds with one another!

� Diversity is often improved by selecting slightly less probable words, but this tends to reduce factuality
and coherence

Natalie Parde - UIC CS 421 41

Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the
previous output until that point, and use a Transformer-based language model to calculate that probability

� Top-k Sampling: Instead of choosing the most probable word to generate:

1. Truncate the distribution to the top k most likely words

2. Renormalize the probability distribution

3. Randomly sample from among those k words according to the renormalized probabilities

� Tends to produce more diverse text while still retaining reasonably good quality

Natalie Parde - UIC CS 421 42

Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the
previous output until that point, and use a Transformer-based language model to calculate that
probability

� Top-k Sampling: Instead of choosing the most probable word to generate, sample from among the top
k most likely words

� Nucleus or Top-p Sampling: Instead of keeping the top fixed-k words, keep the top p percent of the
probability mass

1. Truncate the distribution to remove very unlikely words in terms of their probability (don’t keep a predetermined
number of words)

2. Proceed similarly to top-k sampling

� By dynamically increasing and decreasing the pool of word candidates, this approach may be more robust in
different contexts

Natalie Parde - UIC CS 421 43

Popular Sampling Strategies for LLMs

� Random Sampling: At each timestep, sample words according to their probability conditioned on the
previous output until that point, and use a Transformer-based language model to calculate that
probability

� Top-k Sampling: Instead of choosing the most probable word to generate, sample from among the top
k most likely words

� Nucleus or Top-p Sampling: Instead of keeping the top fixed-k words, keep the top p percent of the
probability mass

� Temperature Sampling: Reshape the distribution rather than truncating it
� Intuition comes from thermodynamics: Systems at high temperatures are flexible and can explore many

possible states, whereas systems at low temperatures focus on the most probable words and decrease the
probability of exploring rare words

Natalie Parde - UIC CS 421 44

Temperature Sampling

� Divide the logit by a temperature parameter, 𝜏, before normalizing it and passing it through the softmax
function

� 𝑦 = softmax('
(
)

� Why does temperature sampling work?

� Consider the low temperature sampling range 𝜏 ∈ (0,1]:
� When 𝜏 is very close to 1, the distribution remains very similar to the original z

� With lower 𝜏, then '
(
 results in larger values being passed to the softmax function

� Larger values passed to softmax result in increased probabilities for those corresponding words
and accordingly smaller probabilities for the other, lower-probability words

� As 𝜏 approaches 0, the approach grows greedier and the probability of the most likely word
approaches 1.0

� In high temperature sampling (𝜏 > 1), we can progressively flatten the word probability rather than
making it greedier

Natalie Parde - UIC CS 421 45

Advantages of Prompting

• Successful few-shot or even zero-shot
approaches facilitate learning (or “learning”)
from few or no training examples

• This allows researchers to build models for
tasks that were previously inaccessible due to
extremely scarce resource availability

• Prompting also requires limited or no
parameter tuning for the base language model,
making it possible to develop classifiers more
efficiently

Natalie Parde - UIC CS 421 46

This
Week’s
Topics

Natalie Parde - UIC CS 421 47

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

What about cases when
we can’t use a pretrained
LLM from scratch?

� We can use LLMs as base models and further
develop them for specific tasks using a
process called fine-tuning

� This may be useful in many specialized
settings:

� Legal text

� Medical text

� Low-resource languages

Natalie Parde - UIC CS 421 48

How does fine-tuning work?

• In a nutshell:

• Take a pretrained model

• Run additional training passes on it using new data

Natalie Parde - UIC CS 421 49

Pretrained
LLMTraining

How does fine-tuning work?

• In a nutshell:

• Take a pretrained model

• Run additional training passes on it using new data

Natalie Parde - UIC CS 421 50

Pretrained
LLM

Fine-
Tuned
LLMTraining More training!

How can we fine-tune models (in more detail)?

� Several different approaches

� Popular and straightforward approach: continued pretraining

� Retrain all the parameters of the model on the new data as if it just directly follows the pretraining data in the
dataset

� Same task goal (word prediction)

� Same loss function

� This approach works well, but can be slow and expensive

Natalie Parde - UIC CS 421 51

How to
improve
efficiency
when fine-
tuning LLMs?

Natalie Parde - UIC CS 421 52

Freeze some parameters
(leave them unchanged from
what was learned during
pretraining) and focus on
training the remaining
parameters

Often referred to
as parameter-
efficient fine-
tuning (PEFT)

Use a language model as a
classifier for a different task
(not language modeling itself)
by adding a task head

Input to task head:
Top layer
embedding(s)
from the LLM
Output: Classifier
prediction

Switch to using supervised
fine-tuning

Create a dataset
of prompts and
their desired
responses, and
train the language
model to predict
these responses

Evaluating LLMs

� Perplexity (introduced a few weeks ago with n-
gram language modeling) is also used to evaluate
LLMs

� However, keep in mind: With LLMs, perplexity will
be sensitive to differences in the tokenization
algorithm

� Make sure that if you’re comparing LLMs using
perplexity, they were trained using the same
tokenizer!

� Task-specific metrics

� Power metrics

� Model size

� Training and inference times

� Energy usage

� Fairness

Natalie Parde - UIC CS 421 53

Potential Harms from LLMs

Hallucination: LLMs are trained to
generate tokens that would
predictably come next in a coherent
output, but most training algorithms
do not have a way to enforce
correctness
•This means that LLMs often generate content

that sounds “good” but has no factual basis!

Toxic Language: Just like in earlier
data-driven models (e.g., GloVe

vectors), LLMs have been shown to
replicate human stereotypes and

negative attitudes about
demographic groups

Cultural Bias: Web-based training
data is disproportionately authored

by people living in western countries,
and as a result, LLMs often take a

western cultural perspective

Information Leakage: If sensitive
information isn’t properly filtered

from the training data, adversaries
can extract it through the use of

malicious prompts

Misinformation: Since LLMs
effectively generate coherent

language, they can be used by
malicious actors to generate harmful

but convincing misinformation or
propaganda

Natalie Parde - UIC CS 421 54

Finding ways to address these potential harms is an important and active research area in NLP!

Summary:
LLMs

� Generative AI in an NLP context refers to LLMs: large
Transformer-based models trained for language modeling
purposes

� LLMs can be pretrained and prompted for a wide variety
of purposes

� Many LLMs are pretrained using teacher forcing, which
forces the model to learn to predict the next word based
on the correct input context

� LLMs are generally trained using large web corpora, which
should be filtered for quality and safety purposes

� Prompting by simply providing an input or instruction to a
model and expecting an answer directly is often referred to
as zero-shot learning

� There are numerous strategies that we can use to decode
an LLM to produce a sequence of generated output

� If we don’t want to use a pretrained LLM directly for our
task, we can also fine-tune it to perform better in our
desired task setting

Natalie Parde - UIC CS 421 55

This
Week’s
Topics

Natalie Parde - UIC CS 421 56

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

LLMs Beyond
GPT

� GPT-powered models are the most popular
LLMs among the general public, but they are
far from the only type of LLM used by NLP
researchers!

� Recall: With other sequence processing
architectures (e.g., RNNs), bidirectionality
is known to improve performance

Natalie Parde - UIC CS 421 57

Can Transformers
be bidirectional?

Natalie Parde - UIC CS 421

� No theoretical reason why not!

� In causal LLMs (i.e., GPT-style
models) we artificially constrain
the model to consider only
previous history because
considering future context would
trivialize the task of next word
prediction

58

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score &! , &" = (! ⋅ *"

qis
!!" = softmax score -!, -"

+! =-.!"/"
"#!

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

In what
settings would
bidirectional
Transformers
be useful?

� In general, sequence labeling tasks (not generation!)

� Tasks where you can reasonably assume you’ll have the
full context for all unit(s) to be labeled within a text
sequence, and that no additional context will later be
added

� Examples:

� Classifying social media posts from a dataset

� Assigning grammatical labels to words within a
sentence that is already fully available

Natalie Parde - UIC CS 421 59

Bidirectional
Transformers

� Useful? ✅

� However, implementing bidirectional
Transformers requires that we rethink some
aspects of our LLM

q New training objective needed (next
word prediction makes no sense with a
model that can view the next word)

q New inference approaches needed (if
we pretrain using a different training
objective, the model is unlikely to
generate text sequences of a similar
quality to those produced using GPT-
style LLMs)

Natalie Parde - UIC CS 421 60

What training
objective
works well for
a bidirectional
Transformer?

Natalie Parde - UIC CS 421 61

• Language modeling objectives can be trained
in a self-supervised manner

• Next word prediction works impressively well
at helping LLMs understand relationships
between real-world concepts

What we know from causal LLMs:

• Come up with training objectives that capture
the same type of information as next word
prediction, but that don’t rely on predicting a
fixed-position unknown future word

The goal, then:

• Masked language modeling

The solution:

Masked Language Modeling

� Randomly select a subset of tokens from the training input and:

� Replace some of them with [MASK] tokens

� Replace some of them with other randomly sampled tokens

� Leave some of them unchanged

� For each sampled token, try to predict what the correct token is

� The more general form of this task is often referred to as denoising: in essence, you add noise to an
input by corrupting it in some way, and then try to remove the noise as a learning objective

Natalie Parde - UIC CS 421 62

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

Natalie Parde - UIC CS 421 63

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a [MASK] night working on my project

…

this driving

Bidirectional Transformer

Natalie Parde - UIC CS 421 64

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a [MASK] night working on my project

…

this driving

Bidirectional Transformer

Natalie Parde - UIC CS 421 65

late project morning

Key Differences
between Masked
Language
Modeling and
Next Word
Prediction

� Requires mapping an input sequence to an
output sequence of the same length

� Masked tokens may be anywhere within
the input sequence!

� In doing so, emphasizes the learning of high-
quality contextual representations of all
input tokens

� These contextual representations can be
broadly useful across many applications

Natalie Parde - UIC CS 421 66

Decoder-Only
Versus Encoder-
Only Models

� Recall (from week one!) our discussion of encoder-decoder models

� Causal LLMs like GPT are often referred to as decoder-only models
since they focus on generating output

� With this analogy, bidirectional LLMs could be thought of as encoder-
only models: the focus is on generating high-quality contextual
encodings of the input, rather than on producing a running stream of
output

Natalie Parde - UIC CS 421 67

What is your favorite
part of CS 421? Encoder Decoder

Hmm, good question
…maybe the part
about chatbots?

This
Week’s
Topics

Natalie Parde - UIC CS 421 68

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

Bidirectional Transformer Architecture

� Aside from the pretraining objective, are any major changes
required from the Transformer architectures used for causal LLMs?

� Nope!

� Just allow the model to access the full context and change the
pretraining objective

� Different types of bidirectional Transformers can be created, just like
different types of causal Transformers can be created, by stacking
Transformer blocks and using variations of standard pretraining tasks

� Extremely popular bidirectional Transformer architecture: BERT

� Paper Link: https://aclanthology.org/N19-1423.pdf

Natalie Parde - UIC CS 421 69

https://aclanthology.org/N19-1423.pdf

Bidirectional Encoder Representations from Transformers (BERT)

� Commonly accepted as a standard bidirectional Transformer benchmark model

� Implemented using:

� 12 Transformer blocks, each of which have 12 bidirectional attention heads

� 768-dimensional hidden layers

� A subword vocabulary of 30,000 tokens

� A fixed input length of 512 subword tokens

� Overall, this means that the model has 100,000,000 trainable parameters!

Natalie Parde - UIC CS 421 70

Many variations
and extensions of
BERT have been
developed and are
very popular
among NLP
researchers.

� RoBERTa: Trains for longer and removes a
pretraining task (more soon!)

� XLM-RoBERTa: Pretrains similarly to
RoBERTa but with multiple languages in the
input dataset

� SpanBERT: Focuses on spans of text

� DistilBERT: Distills BERT such that fewer
parameters are needed (more efficient)

Natalie Parde - UIC CS 421 71

XLM-
RoBERTa’s
Architecture

� Multilingual subword vocabulary with 250,000 tokens

� 24 Transformer blocks, each with 16 attention heads

� 1024-dimensional hidden layers

� A fixed input length of 512 subword tokens

� This amounts to 550,000,000 trainable parameters overall

� Note that this is still relatively small compared to state-of-
the-art causal LLMs (Llama 3 has 405,000,000,000
parameters)!

� Masked language models tend to be much smaller, and thus
more efficient to train, than causal LLMs

Natalie Parde - UIC CS 421 72

BERT is trained to perform two tasks.

• Masked language modeling
• As described earlier, but include position embeddings

Natalie Parde - UIC CS 421 73

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

BERT is trained to perform two tasks.

• Masked language modeling
• As described earlier, but include position embeddings

• In BERT, 15% of tokens per sequence are sampled for learning (80% of these are replaced
with [MASK], 10% are replaced with other randomly sampled tokens, and 10% are left
unchanged)

• Next sentence prediction
• Predict whether pairs of sentences are actually adjacent to one another in text
• Prepend a [CLS] token to the pair of sentences

• Separate the two sentences using a [SEP] token

• Add segment embeddings to the model

• Assign a label based on the representation learned for the [CLS] token

Natalie Parde - UIC CS 421 74

Next Sentence Prediction

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

Natalie Parde - UIC CS 421 75

Next Sentence Prediction

[CLS] p1 s1

…

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 421 76

Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer

1 (second sentence does follow the first)

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 421 77

Why add next
sentence
prediction?

� For many tasks, it is beneficial to understand the
relationships between pairs of sentences

� Paraphrase detection
� Entailment

� Discourse coherence
� This more global type of understanding isn’t directly

encoded using masked language modeling

� Next sentence prediction allows us to target this
more directly while still using self-supervised
learning
� 50% of training pairs are taken from the corpus

directly
� 50% are created by randomly sampling a

second sentence from elsewhere in the corpus

Natalie Parde - UIC CS 421 78

This
Week’s
Topics

Natalie Parde - UIC CS 421 79

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

Contextual
Embeddings

� An important auxiliary outcome of training masked
language models is that they learn contextual
embeddings for all of the tokens in an input (including
tokens that weren’t masked out)

� How can we access these embeddings?

� Use the output vector zi for a particular input token xi
directly

� Or, average across the last few layers of the model to get
an averaged zi

� We can use these embeddings in all of the same types
of applications where we would use other word
vectors!

� Feature representations

� Word similarity and analogy tasks

Natalie Parde - UIC CS 421 80

We can also use contextual embeddings for more general-purpose
similarity metrics.

� BERTScore

� Get contextual embeddings for tokens in the candidate and reference

� Find the cosine similarity between each possible pair of (candidate, reference) tokens

� Match each token in the candidate with its most similar token in the reference

� Use the similarity values for those matches to calculate BERT-precision and BERT-recall

� 𝑅BERT =
)
|+|
∑+$∈+max-+%∈ -+

𝐱./ ;𝐱0

� 𝑃BERT =
)
| -+|
∑ -+%∈ -+max+$∈+

𝐱./ ;𝐱0

� Use BERT-precision and BERT-recall to compute F1 (same equation as usual)

Natalie Parde - UIC CS 421 81

Contextual Versus
Static Embeddings

� Static word embeddings (e.g., Word2Vec, GloVe, or
TFIDF) represent the meaning of unique vocabulary
words

� Regardless of how the vocabulary word is used,
the vector will remain the same

� Contextual word embeddings represent the meaning of
tokens as they appear in text

� Vectors will only be the same if the context for two
tokens is identical (very rare for this to be the
case!)

� This means that different senses of a word will be
represented using different vectors (and even just
the same word sense used in a slightly different
context will be represented using a different
vector)

Natalie Parde - UIC CS 421

82

Measuring
Similarity
between
Contextual
Embeddings

� Contextual embeddings tend to be more
similar across all words than static
embeddings

� This means that the cosine similarity for
most contextual vectors will be close to 1.0

� If we’re interested in measuring vector
similarity between tokens, we would ideally
have more isotropic vectors, such that the
expected cosine similarity between a
randomly sampled pair of embeddings
would be 0

Natalie Parde - UIC CS 421 83

How can we
make our
vectors more
isotropic?

� Standardize the vectors by subtracting the mean vector and
dividing by the standard deviation

� Mean vector of all embeddings in a corpus C:

� 𝜇 =)
|!|
∑x∈! 𝐱

� Standard deviation:

� 𝜎 =)
|!|
∑x∈!(𝐱 − 𝛍),

� Standardized vector:

� 𝐳 = 𝐱.𝛍
0

Natalie Parde - UIC CS 421 84

This
Week’s
Topics

Natalie Parde - UIC CS 421 85

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

Pretrain and Finetune Paradigm

� BERT is the most popular LLM used in the pretrain and finetune paradigm

� Intuition:

� If we take models that have been pretrained on massive datasets for other
tasks, we can finetune them for our specific task while also taking advantage of
the information that was learned during the pretraining process

Natalie Parde - UIC CS 421 86

How do we
finetune
bidirectional
Transformers?

� Take a large model that has already been trained
for some other task

� Example: BERT has already been trained for
masked language modeling and next sentence
prediction

� Add a task head to the model

� Task-specific layer(s) that take the input
representations from the pretrained model and
produce your desired output

� Update the parameters for the task head while
ignoring or only minimally adjusting the weights
for the pretrained model

� This will require that you have supervised training
data for your target task

Natalie Parde - UIC CS 421 87

Example: Finetuned Sarcasm Detector

[CLS] p1

Bidirectional Transformer

sarcasm

Natalie Parde - UIC CS 421 88

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

Why does this work?

• Pretraining on large datasets allows language models to
build high-quality representations facilitating general
language understanding

• In many cases, this knowledge can be reused across
many tasks
• Sentences are likely to have similar structure across many

language domains

• Common sense knowledge is likely to transfer across
problem settings

• Semantic relationships often hold across tasks

• Specialized tasks often have much less data available
than the tasks used to train large language models

• By finetuning an existing LLM to perform the specialized
task, we can retain the useful general language
information we’ve learned and use it to help us more
efficiently and effectively solve our specialized task

Natalie Parde - UIC CS 421 89

We can use
finetuning in many
different task
setups.

� Sequence classification

� Add a unique [CLS] token to the beginning of the input, and use
the output vector for that token as input to the task head

Natalie Parde - UIC CS 421 90
[CLS] p1

Bidirectional Transformer

sarcasm

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

We can use
finetuning in many
different task
setups.

� Sequence classification

� Add a unique [CLS] token to the beginning of the input, and use
the output vector for that token as input to the task head

� Sequence pair classification

� Set the task up similarly to the next sentence prediction
pretraining objective (add a [CLS] token and also separate
sentences using [SEP] tokens)

Natalie Parde - UIC CS 421 91

[CLS] p1 s1

…

Bidirectional Transformer

1 (second sentence does follow the first)

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2

We can use
finetuning in many
different task
setups.

� Sequence classification

� Add a unique [CLS] token to the beginning of the input, and use
the output vector for that token as input to the task head

� Sequence pair classification

� Set the task up similarly to the next sentence prediction
pretraining objective (add a [CLS] token and also separate
sentences using [SEP] tokens)

� Sequence labeling

� Set the task up similarly to the masked language modeling task,
but predict output labels for every token in the input (not just
those that are masked)

Natalie Parde - UIC CS 421 92
After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a [MASK] night working on my project

…

this driving

Bidirectional Transformer

late project morning

This
Week’s
Topics

Natalie Parde - UIC CS 421 93

Tuesday

Large Language Models
Pretraining
Prompting
Fine-Tuning

Thursday

Masked Language Modeling
Popular Bidirectional
Transformer Architectures
Contextual Embeddings
More Fine-Tuning
Best Practices for Data-Driven
Learning

Which model should you use?

� Many approaches are now available for us to use when developing NLP systems, ranging from early rule-
based techniques to very recent prompt-based methods

� In general, with each new modeling era of NLP we have sacrificed some degree of control and interpretability
for increased performance

Natalie Parde - UIC CS 421 94

Rule-Based

• Complete control and
interpretability, but very
limited ability to
generalize

Statistical

• We have immediate
access to feature values
and weights and can
generalize a bit more
broadly, but we require
supervised training data

Neural End-to-End

• We no longer know our
feature values or
weights, but we can
generalize more broadly
and we know our exact
inputs and outputs

Pretrain and Finetune

• We are generalizing from
a wealth of broad
knowledge, although we
only know specific
data/task details
pertaining to our target
task

Pretrain and Prompt

• We don’t know exactly
how or why our model is
making its decisions, but
we achieve strong
performance and no
longer require
supervised training data

Remember, deep learning isn’t necessarily the
best solution in all scenarios!

� Less interpretable

� Particularly important to consider when dealing
with sensitive tasks (e.g., classifying health-related
documents)

� Prompt-based approaches may generate
inaccurate output and present it confidently

� May overfit with very low-resource problems

� May overcomplicate the solution

� In some cases, a naïve Bayes model may work just
as well as a complex deep learning approach

Natalie Parde - UIC CS 421 95

Tools for
Implementing
Generative AI
Systems

� Pretrained Language Models

� HuggingFace Model Hub:
https://huggingface.co/models

� Deep Learning Frameworks

� PyTorch: https://pytorch.org/

� TensorFlow: https://www.tensorflow.org/

� Prompt Tuning Frameworks

� OpenPrompt:
https://github.com/thunlp/OpenPrompt

Natalie Parde - UIC CS 421 96

https://huggingface.co/models
https://pytorch.org/
https://www.tensorflow.org/
https://github.com/thunlp/OpenPrompt

Other Practical Guidelines for Data-Driven NLP

� When using publicly available models or releasing your own model
or data to the public, it is good to be transparent about:

� How the data was collected and/or the model was trained

� Whether your resource is open or closed

� Other information applicable to the greater community

Natalie Parde - UIC CS 421 97

Datasheets

� In electronics, new applications typically come with
datasheets that describe important information for
understanding how to use the application properly

� AI research until recently has had no such
equivalent, but this is quickly changing!

� It is now considered a best practice to release a
datasheet with every new dataset

� Paper introducing datasheets:
https://www.microsoft.com/en-
us/research/uploads/prod/2019/01/1803.09010.pdf

Natalie Parde - UIC CS 421 98

https://www.microsoft.com/en-us/research/uploads/prod/2019/01/1803.09010.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/01/1803.09010.pdf

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 99

Why create this dataset in
the first place (and who

funded it)?

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 100

Why create this dataset in
the first place (and who

funded it)?
What are the instances in the

data and the relationships
between them? How large (and
comprehensive) is the dataset?

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 101

Why create this dataset in
the first place (and who

funded it)?
What are the instances in the

data and the relationships
between them? How large (and
comprehensive) is the dataset?

How was the data collected, who was
involved, and how long did it take? (Is

anything redacted from the data?)

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 102

Why create this dataset in
the first place (and who

funded it)?
What are the instances in the

data and the relationships
between them? How large (and
comprehensive) is the dataset?

How was the data collected, who was
involved, and how long did it take? (Is

anything redacted from the data?)
How was the data

preprocessed (and is the
raw data still available)?

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 103

Why create this dataset in
the first place (and who

funded it)?
What are the instances in the

data and the relationships
between them? How large (and
comprehensive) is the dataset?

How was the data collected, who was
involved, and how long did it take? (Is

anything redacted from the data?)
How was the data

preprocessed (and is the
raw data still available)?

What license is the data distributed
under? (Are there any fees or
access/export restrictions?)

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 104

Why create this dataset in
the first place (and who

funded it)?
What are the instances in the

data and the relationships
between them? How large (and
comprehensive) is the dataset?

How was the data collected, who was
involved, and how long did it take? (Is

anything redacted from the data?)
How was the data

preprocessed (and is the
raw data still available)?

What license is the data distributed
under? (Are there any fees or
access/export restrictions?)

Who will support the dataset, and for
how long? (Will the dataset be

extended, and can others extend it?)

What should be included in a datasheet?

� Motivation for dataset creation

� Dataset composition

� Data collection process

� Data preprocessing

� Dataset distribution

� Dataset maintenance

� Legal and ethical considerations

Natalie Parde - UIC CS 421 105

Why create this dataset in
the first place (and who

funded it)?
What are the instances in the

data and the relationships
between them? How large (and
comprehensive) is the dataset?

How was the data collected, who was
involved, and how long did it take? (Is

anything redacted from the data?)
How was the data

preprocessed (and is the
raw data still available)?

What license is the data distributed
under? (Are there any fees or
access/export restrictions?)

Who will support the dataset, and for
how long? (Will the dataset be

extended, and can others extend it?)Were the people represented by the dataset
informed of the data’s collection, and was the data
collection reviewed by an ethical board? (Does the
dataset include information that might be sensitive,

confidential, inappropriate, or offensive?)

What about
datasheets for
trained models?

� Less popular so far, but there is also
increasing interest in this

� Top-tier NLP research venues now require
general-purpose “responsible AI” checklists
that cover both data collection and model
development

� Responsible NLP Research Checklist:
https://aclrollingreview.org/responsible
NLPresearch/

� Checklist for responsible data use in
NLP:
https://aclanthology.org/2021.findings-
emnlp.414.pdf

� Reproducibility in NLP checklist:
https://aclanthology.org/D19-1224.pdf

Natalie Parde - UIC CS 421 106

https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://aclanthology.org/2021.findings-emnlp.414.pdf
https://aclanthology.org/2021.findings-emnlp.414.pdf
https://aclanthology.org/D19-1224.pdf

Increasing compute requirements have recently
opened new questions about data and model access.

� Until recently, most generally-useful
NLP models could be reasonably
expected to run on standard
consumer-grade or academic
hardware

� Naïve Bayes and logistic
regression are lightweight
models that can be trained on a
laptop!

� However, high-performing general-
purpose models today tend to be
LLMs with massive compute
requirements

Natalie Parde - UIC CS 421 107

As a result, many
researchers and NLP
hobbyists find themselves
facing a dilemma….

� Should they purchase the necessary
hardware to run training and inference
cycles for their desired LLM architecture?

� Or, should they purchase API credits to
access an externally hosted LLM?

Natalie Parde - UIC CS 421 108

Open and Closed
Models
� Open Models: LLMs that are open-sourced, meaning

that you can download their source code and make
updates, retrain them, and run inference using them
(provided that you have the necessary hardware)

� Llama 3.1

� BLOOM

� BERT

� Closed Models: LLMs that are not open-sourced,
meaning that you can only access them through API
calls.

� GPT-4 (and other recent GPT models)

� Gemini

� Claude

Natalie Parde - UIC CS 421 109

Which is better to use: open or closed models?

Open Models
� Advantages:

� Enhanced data security

� Only downstream cost is power consumption

� Customizable

� Transparent

� Disadvantages:
� Big upfront cost (hardware!)

� Requires systems expertise

� Ample opportunity for bugs to emerge

Closed Models
� Advantages:

� No local hardware requirements

� LLM host takes care of messy backend issues

� Easy to switch between LLM architectures

� Straightforward to use

� Disadvantages:
� Costs are incurred with each use

� Data is sent to third-party

� Black box

Natalie Parde - UIC CS 421 110

Cases that may suggest using one or the other include….

Natalie Parde - UIC CS 421 111

Scenario: You are working in a
well-established research lab

with a GPU cluster, and you want
to experiment with many

variations of an LLM

• Recommendation: Open
models will allow you to
leverage your existing resources
and more fully customize your
model

Scenario: You are just starting out
exploring LLMs, and you have an

idea that you want to test for a
personal project

• Recommendation: Closed
models will abstract away a lot
of the complicated setup
required to train and use LLMs,
and the number of API calls
you’ll need for a personal
project likely won’t incur
massive expenses

Scenario: You’re a doctor and
you’re interested in whether LLMs

can effectively find important
details in your patients’ medical

records

• Recommendation: Open
models will allow you to keep
your data in your local
environment---you don’t want to
risk medical records being used
for later model training by a
third-party entity!

Scenario: You’re working in a
well-established research lab and

you’d like to use an LLM to
generate synthetic data for

downstream classifier training

• Recommendation: Either type
of model will work! Open
models are more replicable if
your lab is equipped to run
them, whereas closed models
may produce a bit higher-quality
output and are unlikely to be
expensive for generating a fixed
number of data samples

How can we
release models
and data to the
greater
community?

� To release data to the community, there are a few
ways to ensure that others can find and access it:

� Host the data on a well-known data repository
�HuggingFace Hub:

https://huggingface.co/datasets

�LRE Map: https://lremap.elra.info/
� Publish a paper about the data

� International Conference on Language
Resources and Evaluation: https://lrec-
coling-2024.org/

�arXiv (for non peer-reviewed work):
https://arxiv.org/

� Create a datasheet with clear guidelines and
licensing terms

Natalie Parde - UIC CS 421 112

https://huggingface.co/datasets
https://lremap.elra.info/
https://lrec-coling-2024.org/
https://lrec-coling-2024.org/
https://arxiv.org/

How can we
release models
and data to the
greater
community?

� To release models to the community, you can:
� Host the code in a publicly accessible

repository with clear documentation
� GitHub

� HuggingFace Hub:
https://huggingface.co/docs/hub/en/index

� Zenodo: https://zenodo.org/ (gives you citeable
DOI, which is helpful for many researchers)

� Establish clear protocols for use, reuse,
modification, and attribution
� Give people a bibliography entry that they can

easily add as a reference!

� Fill out a responsible AI checklist with full
information available about library versions,
runtime environment, hardware requirements,
and hyperparameters so that others can easily
start using your model in their own pipelines

Natalie Parde - UIC CS 421 113

https://huggingface.co/docs/hub/en/index
https://zenodo.org/

Summary:
Masked

Language
Modeling and

Practical
Guidelines for

Data-Driven NLP

� Bidirectional Transformers are used to train LLMs with masked
language modeling objectives

� Whereas causal LLMs are often viewed as decoder-only
models, masked language modeling LLMs are often viewed as
encoder-only models

� BERT is a popular bidirectional Transformer architecture

� BERT and similar models produce contextual embeddings and
can be finetuned for many different types of NLP tasks

� When we share datasets publicly, it is a best practice to also
share a datasheet

� When we share models publicly, it is a best practice to share
code, hyperparameters, guidelines for use, and other
information that others may need to replicate the work

� LLMs may be available as open or closed models, and these
models may be best-suited to different types of problems or
computing environments

Natalie Parde - UIC CS 421 114

